COSMetyc : OpenStreetMap en OCaml

Timothé Baleras!, Martin Bodin®! et Ugo Comignani®?

!Université Grenoble Alpes, Inria, LIG, 38000 Grenoble, France

Nous présentons COSMetyc, une bibliothéque OCaml pour manipuler les don-
nées OpenStreetMap (OSM), une base de données géographique collaborative.
Face a I’hétérogénéité des usages, formats et représentations dans 1’écosystéme
OSM, nous proposons une solution modulaire exploitant le systéme de types
d’OCaml pour garantir statiquement la validité des données. Notre bibliothéque
permet d’importer et d’exporter des données depuis différents formats (notam-
ment GeoJSON et OSM XML) via différentes représentations typées, de convertir
entre systémes de coordonnées, et d’effectuer des requétes spatiales efficaces.
Nous présentons un retour d’expérience sur la conception de cette bibliothéque
et illustrons comment les foncteurs, types fantomes et variants polymorphes
d’OCaml permettent de gérer cette complexité.

1 Introduction

1.1 OpenStreetMap : un écosystéme riche et hétérogéne

OpenStreetMap (OSM) est une base de données géographique collaborative comparable a
Wikipédia : n’importe qui peut contribuer en ajoutant, modifiant ou supprimant des données.
Sa licence libre ODbL trés permissive a conduit & son adoption massive par de nombreux
acteurs publics et privés, générant un écosystéme d’une grande diversité.

A partir de cette base de données, il est possible de générer des cartes, de construire des
applications de routage, des statistiques, des simulations, et bien d’autres applications. La
figure 1 illustre cette diversité : rendus généralistes pour le grand public, rendus artistiques,
cartes thématiques techniques (voies cyclables, éclairage public), applications de routage, et
méme utilisations dans des domaines éloignés de la cartographie comme les jeux vidéos ou
la simulation numérique.

1.2 Problématique et contributions

Cette richesse d’usages s’accompagne d’une complexité importante : les bibliothéques
existantes pour manipuler OSM [lib] utilisent une grande diversité de langages de program-
mation, mais les langages fonctionnels y sont presque absents. De nombreux projets utilisent
ces bibliothéques, a des niveaux de maturité technologique [iso13| trés variés : certains sont
de simples scripts d’importation, d’autres des programmes avec une communauté établie.

Dans cet article, nous présentons COSMetyc, une bibliothéque OCaml pour manipuler
les données OSM. Son code source est disponible & https://gitlab.inria.fr/mbodinl/
logic-osm avec 8000 lignes de code et des tests variés. Nos contributions principales sont :

1. Une architecture modulaire basée sur des foncteurs permettant d’adapter la représen-
tation des données aux besoins spécifiques de chaque usage ;

JFLA 2026 — 37°° Journées Francophones des Langages Applicatifs

https://orcid.org/0000-0003-3588-3782
https://orcid.org/0000-0002-7730-9028
https://gitlab.inria.fr/mbodin1/logic-osm
https://gitlab.inria.fr/mbodin1/logic-osm

COSMetyc : OpenStreetMap en OCaml Baleras, Bodin, et Comignani

d Innovallée
e W\Ts Montbonnot

g ; .

(a) Rendu généraliste (b) Rendu artistique

(d) Rendu 3D (e) Rendu de lampadaires (f) Routage sur un téléphone

Figure 1. Exemples de rendus générés avec des données OpenStreetMap

2. L’utilisation de types fantémes et variants polymorphes pour garantir statiquement la
validité des fichiers OSM XML générés;

3. Une implémentation compléte de conversions entre systémes de coordonnées (WGS 84,
Lambert) basée sur les spécifications officielles ;

4. Un retour d’expérience sur l'utilisation du systéme de types d’OCaml pour gérer
I’hétérogénéité des données géospatiales.

Plan de P’article. La partie 2 présente le contexte hétérogéne d’OSM sous quatre aspects :
usages, données, bibliotheques existantes et échelles spatiales. La partie 3 décrit comment
OCaml permet de représenter et manipuler ces données de maniére typée et modulaire. La
partie 4 détaille les conversions entre systémes de coordonnées. La partie 5 présente notre
évaluation et un cas d’usage concret. Nous concluons en partie 6.

2 Un contexte hétérogéne

2.1 Hétérogénéité des données

OpenStreetMap représente le monde via trois types d’objets de base : les nceuds (ponctuels),
les chemins (une suite de noeuds), et les relations (une suite d’objets quelconques). Chaque
objet est associé a des étiquettes clés/valeurs décrivant ses caractéristiques. La figure 2
montre trois exemples : un lampadaire (noeud), un chemin piéton et cyclable, et un batiment
(surface, ici représentée par une relation).

Les clés décrivent les caractéristiques pertinentes pour différents usages. Par exemple, un
rendu 3D (Figure 1d) utilisera height ou building:levels pour estimer la hauteur d’un
batiment, tandis quun rendu 2D (Figure 1a) les ignorera. Pour le routage (Figure 1f), la clé
surface permet de diminuer la priorité des routes avec des surfaces inadaptées.

Surfaces : 3 ou 4 types d’objets? Le batiment 2c est représenté par une surface, qui
n’est pas un type de base mais peut étre encodée via un chemin fermé ou une relation. Cette

JFLA 2026 — 37%° Journées Francophones des Langages Applicatifs

https://www.openstreetmap.org/#map=17/45.217444/5.807691&layers=N
https://makinacorpus.github.io/cassini-gl-style/#16.59/45.217301/5.807561
https://www.cyclosm.org/#map=18/45.21758/5.80756/cyclosm
https://streets.gl/#45.21736,5.80716,34.75,353.00,440.73
https://sb12.github.io/OSMStreetLight/#18/45.21763/5.80747
https://f-droid.org/fr/packages/net.osmand.plus/
https://wiki.openstreetmap.org/wiki/Key:height
https://wiki.openstreetmap.org/wiki/Key:building:levels
https://wiki.openstreetmap.org/wiki/Key:surface

COSMetyc : OpenStreetMap en OCaml Baleras, Bodin, et Comignani

O/O_O/“ ..

o o

bicycle = designated building = office
height = 10 foot — designated name — Inria
highway = street_lamp highway — footway office = research
lamp_mount = bent_mast lit = yes building:colour = white
lamp_type = led name = Chemin Turing building:levels — 3
ref = 42 segregated = no roof :shape = flat
(a) Un noeud surface = asphalt type = multipolygon
(b) Un chemin (c) Une surface

Figure 2. Exemples de données dans OpenStreetMap

ambiguité crée deux visions : certains considérent les surfaces comme un quatriéme type
de base (modéle a 4 types), d’autres comme une sous-catégorie des chemins et relations
(modele a 3 types). Cette distinction influence fortement la conception des outils : certains
formats (comme GeoJSON) stockent les surfaces séparément, tandis que d’autres (comme
OSM XML) les encodent via les types de base.

Les clés/valeurs ne sont pas contraintes : ¢’est I'usage qui prime, documenté sur wiki.
openstreetmap.org’. Des outils comme Osmose [RJ] vérifient la cohérence des données.
OSM donne aussi accés & son historique, exploitable via des outils comme Overpass [Rail.

2.2 Hétérogénéité des formats

De nombreux formats coexistent dans la communauté OSM, chacun avec ses dialectes.
JOSM (un éditeur populaire) refuse les fichiers OSM XML sans attribut versionsur
les noeuds, mais Overpass [Rai] ne génére pas ces champs. GeoJSON a une spécifica-
tion [BDD 16| précise sur la géométrie mais floue sur le stockage des clés, menant & des
implémentations incompatibles.

Ces variations ne posent pas probléme & la communauté car chaque générateur est utilisé
dans des contextes différents. Pour COSMetyc, nous devons accepter le maximum de variantes
pour ne pas limiter son usage.

2.3 Hétérogénéité spatiale et systémes de coordonnées

La densité des données varie considérablement : les villes concentrent des milliers d’objets
par kilométre carré, tandis que les océans en contiennent trés peu. Cette disparité nécessite
des structures de données adaptatives (voir partie 3.3).

De plus, plusieurs systémes de coordonnées coexistent : OSM utilise Pellipsoide WGS 84 [WGS],

mais les administrations frangaise et belge utilisent des projections Lambert [Deca, Decb].
La conversion entre ces systémes est essentielle pour échanger des données (voir partie 4).

2.4 Etat de ’art des bibliothéques

Comme dit précédemment, les bibliothéques existantes [lib] utilisent une grande diversité de
langages (Python, JavaScript, C++, Java, etc.) mais quasiment pas les langages fonctionnels.
Ces bibliothéques visent différents objectifs : interfagage avec I’API serveur, conversion de
formats, génération de rendus, etc.

Nous n’y avons identifié qu'un seul fichier OCaml d’une centaine de lignes lisant un
sous-ensemble d’OSM XML. La plupart des bibliothéques offrent une interface relativement

1. Les clés de la figure 2 sont cliquables et renvoient & leur documentation.

JFLA 2026 — 37%° Journées Francophones des Langages Applicatifs

https://wiki.openstreetmap.org/wiki/Key:height
https://wiki.openstreetmap.org/wiki/Key:highway
https://wiki.openstreetmap.org/wiki/Key:lamp_mount
https://wiki.openstreetmap.org/wiki/Key:lamp_type
https://wiki.openstreetmap.org/wiki/Key:ref
https://wiki.openstreetmap.org/wiki/Key:bicycle
https://wiki.openstreetmap.org/wiki/Key:foot
https://wiki.openstreetmap.org/wiki/Key:highway
https://wiki.openstreetmap.org/wiki/Key:lit
https://wiki.openstreetmap.org/wiki/Key:name
https://wiki.openstreetmap.org/wiki/Key:segregated
https://wiki.openstreetmap.org/wiki/Key:surface
https://wiki.openstreetmap.org/wiki/Key:building
https://wiki.openstreetmap.org/wiki/Key:name
https://wiki.openstreetmap.org/wiki/Key:office
https://wiki.openstreetmap.org/wiki/Key:building:colour
https://wiki.openstreetmap.org/wiki/Key:building:levels
https://wiki.openstreetmap.org/wiki/Key:roof:shape
https://wiki.openstreetmap.org/wiki/Key:type
wiki.openstreetmap.org
wiki.openstreetmap.org

o B N

COSMetyc : OpenStreetMap en OCaml Baleras, Bodin, et Comignani

Module de conversion

/ Représentation & 3 types
' Entrée GeoJSON

Représentation a 4 types
'Entrée OSM XML

Représentation de I’historique

Figure 3. Architecture modulaire de COSMetyc

« bas-niveau » ou 'utilisateur manipule directement les structures de données sans garanties
de cohérence. COSMetyc se distingue de celles-ci par son approche fortement typée.

3 Forces de la représentation en OCaml

3.1 Modularité via foncteurs

L’hétérogénéité des usages rend difficile 'anticipation de l'utilisation de COSMetyc. Nous
proposons donc une architecture modulaire (Figure 3) ou la plupart des modules sont
paramétrés par un module de représentation qui détermine :

— Le nombre de types d’objets (3 ou 4);

— La présence de métadonnées (historique, auteur, etc.) ;

— Le format de stockage des géométries.

Cette approche évite la surutilisation mémoire tout en proposant des structures adaptées a
chaque usage. Une utilisation typique consiste en : entrée de données, manipulation sous une
forme adaptée, puis sortie. Pour des usages complexes nécessitant plusieurs représentations,
un module de conversion est fourni.

Voici un exemple simplifié de signature pour un module de représentation :

module type REPRESENTATION = sig
type node
type way
type relation
(* D'autres types peuvent étre définis pour
représenter les surfaces, l'historique, etc. *)
type object_type (* Union des types ci-dessus *)
end

Les foncteurs d’import/export sont ensuite paramétrés par ces modules :

module Import_GeoJSON(R : REPRESENTATION) : sig g
val read : string -> R.object_type Seq.t

end

module Export_OSM_XML(R : REPRESENTATION) : sig o
val write : R.object_type Seq.t -> string

end

Cette généricité permet de construire des traitements (ici import et export) qui s’adaptent
a la représentation choisie. Le dossier test en illustre plusieurs instanciations.

JFLA 2026 — 37°° Journées Francophones des Langages Applicatifs

https://gitlab.inria.fr/mbodin1/logic-osm/-/blob/jfla/lib/Import/GeoJson.mli
https://gitlab.inria.fr/mbodin1/logic-osm/-/blob/jfla/lib/Export/OSM_XML.mli
https://gitlab.inria.fr/mbodin1/logic-osm/-/tree/jfla/test/Renders

18

20
21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

COSMetyc : OpenStreetMap en OCaml Baleras, Bodin, et Comignani

Ainsi le fichier test GeoJson.ml commence par les lignes ci-dessous. La représentation
Surface est choisie afin de pouvoir sélectionner les surfaces pour un traitement a part, puis
les entrées et sorties vers les fichiers GeoJSON sont construites en instanciant leurs foncteurs
respectifs.

Q

module Repr = Osm.Repr.Surface
module In = Osm.Input.GeoJson.Make (Repr)
module Out = Osm.Output.GeoJson.Make (Repr)

3.2 Garanties statiques via types fantomes

Le format OSM XML est utilisé pour communiquer avec le serveur OSM. Il est essentiel
de garantir que les fichiers générés sont conformes a la spécification. Nous avons adopté
Papproche de TyXML [RGa], qui utilise le systéme de types d’OCaml pour spécifier ce que
chaque balise XML accepte.

Les contraintes sont encodées via des types fantomes (types paramétriques dont le
paramétre n’apparait pas dans la définition) :

Q

type +'a attrib = Xml.attrib
type +'a elt = Xml.elt

Le paramétre 'a n’est utilisé que pour encoder des restrictions. Chaque attribut y est
associé a un variant polymorphe :

Zd
val a_date : string wrap -> [> "Date] attrib &
val a_uid : int wrap -> [> "Uid] attrib

val a_user : string wrap -> [> “User] attrib

.

La balise <comment> accepte les attributs date, uid, user et du texte comme contenu :

type ('a, 'b, 'c) star = 7a:('a attrib list) -> 'b elt list -> 'c elt o
val text : string wrap -> [> “Text] elt
val comment : ([< “Date | “Uid | “User],

[< “Text 1],

[> “Comment]) star

Les types en arguments utilisent des bornes supérieures ([< ...]) car la balise peut
accepter moins d’attributs. Les types de retour utilisent des bornes inférieures ([> ...])
pour permettre la composition.

L’implémentation est simple, car les restrictions n’y apparaissent pas :

Q

let a_date = string_attrib "date"
let a_uid = string_attrib "uid"
let a_user = string_attrib "user"
let comment = star "comment"

let text txt = Xml.pcdata txt

Un usage erroné provoque une erreur de type. Ce code est ainsi accepté :

let accepted =
comment ~a:[a_user "User"] [text "Text"]

Ce code est rejeté (impossible d’imbriquer des <comment>) :

JFLA 2026 — 37%° Journées Francophones des Langages Applicatifs

https://gitlab.inria.fr/mbodin1/logic-osm/-/tree/jfla/test/test_GeoJson.ml
https://gitlab.inria.fr/mbodin1/logic-osm/-/tree/jfla/test/test_GeoJson.ml?ref_type=tags#L2
https://gitlab.inria.fr/mbodin1/logic-osm/-/blob/jfla/lib/OSM_XML_sigs.mli?ref_type=tags#L17
https://gitlab.inria.fr/mbodin1/logic-osm/-/blob/jfla/lib/OSM_XML_sigs.mli?ref_type=tags#L76
https://gitlab.inria.fr/mbodin1/logic-osm/-/blob/jfla/lib/OSM_XML_sigs.mli?ref_type=tags#L167
https://gitlab.inria.fr/mbodin1/logic-osm/-/blob/jfla/lib/Output/OSM_XML_f.ml#L106

36

37

38

39

48

49

50

51

COSMetyc : OpenStreetMap en OCaml Baleras, Bodin, et Comignani

140 | type tree = g
41 | | Leaf of Punctual.t
o| 42 | | Horizontal of
O <} 43 Spatial.t * tree *
°|°°_°_|Q_|o ° 44 Position.Degrees.t * tree
o A°l 1o ;
o 45 | | Vertical of
46 Spatial.t * tree *
(a) Représentation graphique a7 Position.Degrees.t * tree
- w

(b) Représentation en OCaml

Figure 4. Les arbres k-d permettent de découper efficacement ’espace

let refused =
comment [
comment [] (* Erreur : [> “Comment] incompatible avec [< “Text] *)

Cette approche garantit statiquement que notre sortie OSM XML respecte la spécification.

3.3 Requétes spatiales avec arbres k-d

Convertir des fichiers en séquences d’objets est utile, mais les applications ont généralement
besoin de requétes spatiales (obtenir tous les objets dans une zone). Nous avons défini un
foncteur Cache stockant les objets pour permettre ces requétes.

Nous utilisons des arbres k-d [Ben75], arbres de recherche spécialisés pour des objets
spatialisés. Chaque nceud représente une zone découpée horizontalement ou verticalement.
Cette structure découpe fortement les zones denses (villes) tout en laissant simples les zones
peu denses (océans). La figure 4 illustre un découpage de I’espace par cette structure.

Le foncteur Cache est générique sur la source de données :

module Cache(R : REPRESENTATION) (Input : INPUT with type t = R.t) : sig g
val query : bbox -> R.object_type Seq.t
val add : R.object_type -> unit

end

A partir d’une séquence d’objet, ce foncteur construit une structure de données facile
a requéter et stockant naturellement quelles sont les zones déja connues des autres. Cette
généricité permet d’utiliser le cache avec des fichiers locaux, des requétes serveur, ou toute
autre source, tout en évitant les requétes redondantes.

3.4 Module simplifié

La quantité de foncteurs peut intimider les débutants. Nous proposons donc un module
Basic offrant une interface simplifiée avec des choix par défaut :

(¥ * Ezporte vers 0SM XML. *) g
val write_OSM_XML_string : 7indent:bool -> object_type Seq.t -> string

(** Génére un rendu PNG.
Paramétres : nom de fichier, zone, échelle (pizels/métre), objets *)
val render_png : string -> bbox -> float -> object_type Seq.t -> unit

Ce module sacrifie I’expressivité pour la simplicité, permettant une prise en main rapide.

JFLA 2026 — 37%° Journées Francophones des Langages Applicatifs

https://gitlab.inria.fr/mbodin1/logic-osm/-/blob/jfla/lib/Common/zone.ml#L10
https://gitlab.inria.fr/mbodin1/logic-osm/-/tree/jfla/lib/Input/cache.mli?ref_type=heads#L3
https://gitlab.inria.fr/mbodin1/logic-osm/-/blob/jfla/lib/basic.mli?ref_type=tags#L83

COSMetyc : OpenStreetMap en OCaml Baleras, Bodin, et Comignani

--- Approximation sphérique

|:| Projection de Lambert

Figure 5. Illustration de différentes projections (excentricité exagérée)

4 Systémes de coordonnées

4.1 Complexité des modéles terrestres

Choisir un systéme de coordonnées revient a choisir un modéle de la Terre. La Terre n’est
pas parfaitement sphérique : une personne a ’équateur est 0,3 % plus éloignée du centre
qu’une personne aux poles (environ 20 km). Pour la cartographie, une précision de l'ordre
du métre est nécessaire.

Un modele ellipsoidal est plus précis mais insuffisant : les reliefs (montagnes, vallées sous-
marines) et les variations du champ gravitaire créent des disparités importantes. Le géoide
(surface équipotentielle du champ de gravité) s’écarte de l’ellipsoide de référence [WGS|
jusqu’a 100 m en Inde ou 80 m en Nouvelle-Guinée [EPS].

4.2 Projections cartographiques

Pour représenter la Terre sur une carte plane, diverses projections existent. La projection
conique conforme de Lambert [Lam72] (projection utilisée en France et en Belgique) projette
la surface terrestre sur un cone (Figure 5), préservant les angles et limitant les déformations
de distance sur une tranche de latitudes donnée.

4.3 Implémentation des conversions

OpenStreetMap utilise WGS 84 [WGS]|, tandis que les administrations francaises et
belges utilisent Lambert [Deca, Decb]. Nous avons implémenté les conversions en suivant les
spécifications de I'IGN [IGN95].

La figure 6 compare notre implémentation a la spécification officielle. Nous avons privilégié
la fidélité a la spécification plutot que les optimisations, et validé notre implémentation avec
les jeux de tests fournis par 'IGN.

4.4 Calcul de distance

Le calcul de distance dépend du modéle. Sur une sphére, la formule de Haversine [dM™95]
est simple. Sur un ellipsoide, les formules de Vincenty [Vin75] sont précises mais cofiteuses.
Nous avons implémenté trois approches et Position.distance choisit automatiquement :
approximation plane (< 100 m), Haversine (100 m & 15 km), Vincenty (> 15 km). Nous
avons vérifié ’absence de discontinuités aux transitions.

JFLA 2026 — 37%° Journées Francophones des Langages Applicatifs

COSMetyc : OpenStreetMap en OCaml Baleras, Bodin, et Comignani

y
oui non
A
ss | let (x_s, y_s) = &
50 if phi0 =~ pi /. 2. then
X _x ™ _% 60 (base.x0, base.y0)
e v, e e ([(e [61 else
62 (base.x0, base.y0 +. c *.
63 Float.exp (-. n *.
64 isometric_latitude phiO
65 excentricity))
S
Notation utilisée :
Lige) : 1atitude isometrique croissante sur 1'ellipsoide (b) Implémentation dans COSMetyc

(a) Spécification IGN [IGN95, Algo-
rithme 54, p. 21]

Figure 6. Comparaison avec la spécification IGN

5 Evaluation et retour d’expérience

5.1 Validation des formats

Pour valider COSMetyc, nous avons produit des fichiers GeoJSON et OSM XML avec
différents générateurs et vérifié qu’ils sont acceptés par notre bibliothéque. Réciproquement,
nous avons vérifié que nos fichiers générés sont acceptés par JOSM.

Une limitation actuelle : nous ne pouvons pas accepter des fichiers référencant des objets
non définis (cas d’extraction partielle d’une zone). Ceci découle de nos choix de représentation
modulaire (section 3.1) qui privilégient la cohérence interne.

5.2 Cas d’usage : les lampadaires de Grenoble

En travaux futurs, nous avons regu de Grenoble Lumiéres (la compagnie gérant I’éclairage
public) une base de données avec I’ensemble des 17000 luminaires de la ville, incluant
leurs positions en coordonnées Lambert et leurs caractéristiques techniques (type de lampe,
hauteur, puissance, etc.).

Nous comptons importer ces données dans OSM & ’aide de COSMetyc ce qui fournira a
terme une évaluation de I'utilité de la bibliothéque sur un cas réel. Le processus comprendra :

1. Lecture du fichier CSV fourni par Grenoble Lumiéres ;

Conversion des coordonnées Lambert 93 vers WGS 84 (voir partie 4) ;
Transformation des attributs métier vers les étiquettes OSM standards ;
Vérification de cohérence avec les données OSM existantes ;

Génération d’'un fichier OSM XML prét a 'import.

or e N

6 Conclusion

Nous avons présenté COSMetyc, une bibliothéque OCaml pour manipuler les données
OpenStreetMap, congue pour gérer I’hétérogénéité inhérente a cet écosystéme. Nos contribu-
tions principales sont :

— Une architecture modulaire permettant d’adapter la représentation des données (3 ou

4 types d’objets, métadonnées, etc.) aux besoins spécifiques ;
— L’utilisation de types fantomes et variants polymorphes & la TyXML pour garantir
statiquement la conformité des fichiers OSM XML

JFLA 2026 — 37°° Journées Francophones des Langages Applicatifs

https://gitlab.inria.fr/mbodin1/logic-osm/-/blob/jfla/lib/Common/position.ml#L517

COSMetyc : OpenStreetMap en OCaml Baleras, Bodin, et Comignani

— Une implémentation compléte et validée des conversions entre les systémes de coor-

données WGS 84 et Lambert.

Le systéme de types d’OCaml s’est révélé particuliérement adapté pour encoder les
contraintes complexes d’OSM : les foncteurs gérent ’hétérogénéité des représentations, les
types fantomes garantissent la validité des formats, et les arbres k-d permettent des requétes
spatiales efficaces.

Travaux futurs. Plusieurs extensions sont envisagées : support de I'historique OSM
complet, optimisation des performances pour de trés gros volumes, support de formats
additionnels (PBF, Shapefile), et outils d’analyse de qualité des données. Nous espérons que
COSMetyc contribuera a renforcer la présence des langages fonctionnels dans 1’écosystéme
OpenStreetMap et facilitera le développement d’applications de cartographie en OCaml.

Remerciements. Nous remercions Grenoble Lumiéres pour la mise & disposition des
données d’éclairage public, ainsi que la communauté OpenStreetMap pour ses retours
constructifs. Nous remercions également les relecteurs anonymes pour leurs commentaires
détaillés et constructifs qui ont permis d’améliorer substantiellement la structure et la
présentation de cet article. Merci aussi & Aurélie Kong Win Chang pour son aide avec BTEX.

Références

. bUTLER, . DALY, A. DOYLE, Sean GILLIES, 1. SCHAUB et Stefan HAGEN :

BDD™'16] H. B M. D A D S G T.S Stefan H
The GeoJSON Format. RFC, (7946), 2016. https://www.rfc-editor.org/
rfc/rfc7946.txt.

[Ben75] Jon Louis BENTLEY : Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509-517, 1975.

[Decal Décret 2006-272. Légifrance. https://www.legifrance.gouv.fr/loda/id/
LEGIARTI000006344188/2006-03-10.

[Dech] Passage vers le Lambert belge 2008. https://geoportail.wallonie.be/home/
ressources/outils/Lambert-belge-2008-LB08.html.

0sé de MENDOZA et al. : Memoria sobre algunos métodos nuevos de calcular la

dM*95] José de M tal : M ja sobre al Stod de calcular
longitud por las distancias lunares : y aplicacion de su teorica a la solucion de
otros problemas de navegacion. En la Imprenta real, 1795.

[EPS] WGS 84 to EGM2008 height. EPSG. https://epsg.org/transformation_
3859/WGS-84-t0-EGM2008-height-2.html.

[IGN95] Projection cartographique conique conforme de Lambert : Algorithmes. https:
//geodesie.ign.fr/files/geodesie/2025-02/NTG_71.pdf, 1995.

[iso13] Définition des Niveaux de Maturité de la Technologie (NMT) et de leurs critéres
d’évaluation. IS0, 2013. ISO 16290. https://www.iso.org/fr/standard/
56064 .html.

[Lam72] Johann Heinrich LAMBERT : Beytrdge zum Gebrauche der Mathematik und deren
Anwendung, volume 3. Verlag des Buchladens der Realschule, 1772.

[lib] Software libraries. OpenStreetMap Wiki. https://wiki.openstreetmap.org/
wiki/Software_libraries.

[Rai] Martin RAIFER Overpass turbo. https://github.com/tyrasd/
overpass-turbo.

[RGa| Gabriel RADANNE, Stéphane GLONDU et AL. : TyXML. https://github.com/
ocsigen/tyxml.

[RJ] Frédéric RODRIGO et JOCELYNJ : Osmose (OpenStreetMap Oversight Search

Engine). https://osmose.openstreetmap.fr/.

JFLA 2026 — 37%° Journées Francophones des Langages Applicatifs

https://www.rfc-editor.org/rfc/rfc7946.txt
https://www.rfc-editor.org/rfc/rfc7946.txt
https://www.legifrance.gouv.fr/loda/id/LEGIARTI000006344188/2006-03-10
https://www.legifrance.gouv.fr/loda/id/LEGIARTI000006344188/2006-03-10
https://geoportail.wallonie.be/home/ressources/outils/Lambert-belge-2008-LB08.html
https://geoportail.wallonie.be/home/ressources/outils/Lambert-belge-2008-LB08.html
https://epsg.org/transformation_3859/WGS-84-to-EGM2008-height-2.html
https://epsg.org/transformation_3859/WGS-84-to-EGM2008-height-2.html
https://geodesie.ign.fr/files/geodesie/2025-02/NTG_71.pdf
https://geodesie.ign.fr/files/geodesie/2025-02/NTG_71.pdf
https://www.iso.org/fr/standard/56064.html
https://www.iso.org/fr/standard/56064.html
https://wiki.openstreetmap.org/wiki/Software_libraries
https://wiki.openstreetmap.org/wiki/Software_libraries
https://github.com/tyrasd/overpass-turbo
https://github.com/tyrasd/overpass-turbo
https://github.com/ocsigen/tyxml
https://github.com/ocsigen/tyxml
https://osmose.openstreetmap.fr/

COSMetyc : OpenStreetMap en OCaml Baleras, Bodin, et Comignani

[Vin75] Thaddeus VINCENTY : Direct and inverse solutions of geodesics on the ellipsoid
with application of nested equations. Survey review, 23(176):88-93, 1975.

[WGS] World Geodetic System 1984. EPSG. https://epsg.org/ellipsoid_7030/
WGS-84.html.

JFLA 2026 — 37°° Journées Francophones des Langages Applicatifs

https://epsg.org/ellipsoid_7030/WGS-84.html
https://epsg.org/ellipsoid_7030/WGS-84.html

	Introduction
	OpenStreetMap : un écosystème riche et hétérogène
	Problématique et contributions

	Un contexte hétérogène
	Hétérogénéité des données
	Hétérogénéité des formats
	Hétérogénéité spatiale et systèmes de coordonnées
	État de l'art des bibliothèques

	Forces de la représentation en OCaml
	Modularité via foncteurs
	Garanties statiques via types fantômes
	Requêtes spatiales avec arbres k-d
	Module simplifié

	Systèmes de coordonnées
	Complexité des modèles terrestres
	Projections cartographiques
	Implémentation des conversions
	Calcul de distance

	Évaluation et retour d'expérience
	Validation des formats
	Cas d'usage : les lampadaires de Grenoble

	Conclusion

